
J .  Fluid Mech. (1975), VOZ. 69, part 4, pp.  625-630 

Printed in Great Britain 
625 

On energy and enstrophy exchanges in 
two-dimensional non-divergent flow 

By PHILIP E. MERILEES 

A N D  HELEN W A R N  

University Corporation for Atmospheric Research, Boulder, Colorado 803031- 

Department of Meteorology, McGill University, Montreal, Quebec, Canada 

(Received 5 April 1974) 

It is shown that, in two-dimensional non-divergent flow in a bounded region, 
roughly 70% of triad interactions exchange more energy with longer wave- 
lengths than with shorter wavelengths whilst roughly 40 % exchange more 
enstrophy with longer wavelengths than with shorter wavelengths. 

1. Introduction 
There is a statement in Fjertoft’s (1953) paper on two-dimensional energy 

exchange which is in error and which has often been quoted (Kraichnan 1967; 
Charney 1971; Lilly 1967; Green 1974) to indicate a fundamental difference 
between two- and three-dimensional turbulence. The idea in error is that a 
transfer of energy from one wavenumber to a higher one must be accompanied 
by a transfer of still more energy to a lower wavenumber. It is correct that in any 
exchange energy must simultaneously flow up and down scale, but it is not 
correct to say that more must flow in one direction or the other in all triad inter- 
actions. This misunderstanding probably results from the error in equation (20) 
of Fjertoft’s paper. 

The purpose of this paper is to re-examine this question and estimate what 
fraction of interactions transfers more energy to low wavenumbers and vice versa. 
To do this, we shall first consider two-dimensional non-divergent flow in a doubly 
periodic domain. This case has been used by many workers to perform numerical 
simulations of two-dimensional turbulence and is more easily treated than flow 
on a sphere. Subsequently, we shall treat the case of flow on a sphere in analogy 
with the plane case. It should also be noted that our discussion of the triad inter- 
actions is only concerned with the energy exchange and gives no method for 
determining the sign of the energy flow. To deduce the direction of energy flow 
further assumptions must be made such as Batchelor’s (1953, p. 186) hypothesis 
that an initially narrow spectrum spreads out about its centroid. 

t Present address : Department of Meteorology, McGill University, Montreal, Quebec, 
Canada. 

40 F L M  69 



626 P. E. Merileea and H .  Warn 

2. Fjplrtoft’s theorem 

The evolution of this flow is governed by the vorticit,y equation 
Consider the two-dimensional non-divergent flow of an inviscid fluid on a plane. 

2(O2@)/at = - v. V(VPLI/), (1) 

where V = k x V$; k is a unit vector perpendicular to the plane of fluid flow and 
$ is a stream function. If we further confine the flow to be periodic in the plane 
co-ordinates (x, y), then we may expand $ in a Fourier series such that 

$(x, y) = 2pK efK.R, (2) 

where K = k,i + k, j and R = xi t yj. Further, as shown by Lorenz (1960)) when 
(1) is transformed into a set of equations for the evolution of $=, its right-hand 
side takes a form such that energy is exchanged among a triad of components 
(1crg, &,) @M) if K + L + M = 0 and none of K, L or M are collinear. Also, there are 
two ,constants of motion of this flow which are thought to  be fundamental, 
namely the energy E and enstrophy V .  These two quantities may be expressed as 

E =Z(K.K)$K$g,  2 V = X ( K . K ) 2 k K k & .  (3L (4) 

Consider now the energy exchange among an interacting triad of wavenumbers 
(K, L, M). If  we define E, = (K.K)  $K$-x and consider variations of the 
energies for this triad in the manner of Fjsrtoft (1933), then in any interaction 

(5) 

(6) 

Without loss ofgenerality, we may define K, Land M such that IKI < ILI < jM( 
and then if we define X = SE,/EGL and Y = SE,/SE,, ( 5 )  and (6) may be solved 
to obtain 

SEK + SEL + SEAII = 0, 

( K .  K) SE, + (L. L) SEL+ (M.  M) SE, = 0. 

(7)  
L . L - K . K  

K . K - M . M ’  Y =  
M . M - L . L  
K .  K - M. M ’ X =  

From (7) and the ordering assumption, it follows that X and Yare both negative, 
which shows that in any exchange energy must flow both up and down sc$e. 

Let us now consider the relative magnitude of the energy flows. Let S = XI  Y ;  
then if S > I more energy flows to or from longer wavelengths and if S < 1 more 
energy flows to  or from shorter wavelengths. 

We shall now focus on a particular value of L and consider all possible inter- 
actions consistent with the assumed ordering and ask if S is consistently greater 
or less than 1. Using the fact that M = - (K+L)  and (7 ) )  we have 

S = ( K . K + 2 L . K ) / ( L . L - K q K ) .  (8) 

Werequire that 8 2 0 (because [MI 2 1LI)andfurther lKl/lLl < 1. Now suppose 
L . K  = 0 and IKJ = / L /  (1 - e ) .  where 6 is small; then it follows that 

s 2: (1-2€)/2€ > 1. 
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FIGURE 1. Characteristics of energy and enstrophy exchange in plane co-ordinates. K vectors 
may terminate anywhere within the region outlined by the thick line. Those terminating 
to  the left of the other solid line imply S < 1 ; those terminating to the left of the dashed 
line imply Q < 1. The numbers of interactions in each region are proportional to the 
enclosed areas. 

On the other hand, if L . K  = 0 and IKI T B ILI with B small, then 

S T € 2 <  1. 

Thus, we can see that S is not consistently greater or less than I. 

3. The relative magnitudes of energy and enstrophy flow 
We have seen that S cannot always be greater or always less than 1. It is of 

interest, then, to  inquire as to the number of interactions which satisfy one 
condition or the other and their distribution in wavenumber space. To answer 
this question, we again focus on a particular wave vector L and consider a.ll 
possible interactions with wave vectors K and M Consistent with the ordering 
IKI < ILI < [MI. If we define 8 as the angle between L and K, then we have 

(9) 
K.K+2ILI IKI cos8 - a2+2ae0s8  

L . L - K . K  1-a2 ' 
s=  - 

where a = lKl/lLl. 
Consider now a rectangular mesh of points such that the line segments directed 

from the origin to  the points represent the possible wave vectors. Then a circle of 
radius ILI will enclose all possible wave vectors K consistent with the assumed 
ordering. Also, since S 3 0, cos 8 3 - Qa is a further condition imposed by our 
assumed ordering. I n  figure 1, we show the region in which a K vector may 
terminate. Further, i f S  = I, then 

01,(8) = Q{ - cos 8 + (cos28 + 2)*) (10) 

and thus the curve a,(@ divides the area bounded by a < 1 and cos 8 2 - $a into 
two regions. The region on the left corresponds to S < 1, the other S > 1. 
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We can obtain an estimate of the relative number of interactions in these two 
regions by measuring the relative areas of these regions, since each possible 
terminating point occupies (on the average) the same area. Since we are interested 
in the relative number, we may consider that L has unit magnitude. Then if 

A ,  = 2 / l / I r d l i d r  (cos# = &Y) 
0 0  

and 

A J A ,  is a measure of the fraction of interaction for which X > 1. We find that 

so that roughly 70 yo of possible interactions have S > 1 and 30 % have X < 1. 
These figures were verified by actually counting intemctions for a few cases. 

As we have seen, about 70 % of nonlinear interactions lead to a larger exchange 
of energy with lower wavenumbers. The situation is almost reversed in the case 
of enstrophy flow. For if we define Q as the ratio of enstrophy flow to lower wave- 
numbers to enstrophy flow to higher wavenumbers, then 

K . K  a2+2acosB a2 
Q = -  

M.M'= 1-a2 a2+2acos8+1' 

The curve Q = 1 then divides the region in two, as shown by the dashed line in 
figure 1. We note that the area where Q < 1 is now greater than that where 
Q > I. By numerical quadrature, we find that roughly 60 yo of interactions 
exchange more enstrophy with higher wavenumbers. 

4. Extension to spherical geometry 

expansion are spherical harmonics. Thus, we have, in analogy with (2), 
In  spherical co-ordinates, the appropriate functions for the eigenfunction 

where h is longitude, q5 is latitude and Pl the associated Legendre function. In  
tjhe above expansion, k is the total wavenumber and j is the azimuthal wave- 
number. 

Consider a triad interaction among the components $i, $k and $:.Without loss 
of generality, we may consider k < m < q. Such an interaction will be non-trivial 
if j + 1 + p  = 0, k + q > m and k + nz + q is odd. We shall make use of the first two 
selection rules, but ignore the third since we are interested in relative numbers 
of interactions. We may then form two quantities X and Q, 
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(0. n1) - 
I< - 

(m, 3,111 

On. m) 

FIGURE 3. C'haracteristics of energy and enstrophy exchange in spherical co-ordinates. 
Every integer point within the triangle represents a possible interaction triad. Those points 
to the left of and below the solid curve imply S < 1 ; those points to the left of and below- 
the dashed curve imply Q < 1. Because of the redundancy of interaction, the numbers of 
interactions are not directly proportional to the enclosed areas. 

m s<1  S > 1  & < I  & > I  

10 28.9 71.1 63.9 36.1 
30 29.0 71.0 61.0 39.0 
50 29.2 70.8 60.4 39.6 
70 29.1 70.9 59.8 40.2 

100 29.1 70.9 59.6 40.4 

TABLE 1. R.elative numbers (yo) of interactions obtained by counting 

such that if S > 1 (Q > 1) more energy (enstrophy) flows to  or from longer wave- 
lengths and vice versa for S < 1 (& < 1). 

Again, we choose a particular value of m and consider all possible interactions 
consistent with the assumed ordering and the selection rules and ask what 
relative numbers of interactions lead to S or Q greater or less than one. In  figure 2 
we show the region of possible values of k and q. The curves S = 1 and Q = 1 each 
divide the region into two areas as indicated. I n  this case, however, the areas of 
the various regions do not directly indicate the number of distinct interactions 
because of the redundancy of interactions with different j ,  1 and p .  I n  fact, for 
any point in the q, k plane, the number of distinct interactions is of the order of 

If we consider the limit of large ni, we can estimate the relative number of 
interactions in various regions by quadrature. However, because of the difficulty 
of specifying an exact functional form for the density of interactions (i.e. we can 
only say that the density is of the order of (2p+ 1) ( 2 k +  I)), the estimate will be 

(2p+ 1)  (2k+ I). 
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somewhat in error. By quadrature we find that about 25 yo of the interactions 
imply X < 1 and about 55% imply Q < 1. In view of this uncertainty in the 
density function, we have also performed these calculations by actually counting 
interactions for a number of different values of m. These results are shown in 
t'able 1.  We note that, as m grows larger, the relative numbers of interactions 
converge such that about 30 % imply S < 1 and 60 % imply Q < 1. 

5.  Conclusion 
We have shown that energy and enstrophy in a two-dimensional non-divergent 

flow cascade both to lower and higher wavenumbers, but that the relative 
magnitudes of the cascades are not consistently greater or less than unity. On the 
other hand, the majority of interactions are such that more energy flows to and 
from smaller wavenumbers while more enstrophy flows to and from larger wave- 
numbers. This latter concept is central to the concept of two inertial subranges 
which has been advanced by Kraichnan (1967). 

The University Corporation €or Atmospheric Research, Boulder, operates the 
National Center for Atmospheric Research, which is sponsored by the National 
Science Foundation. 
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